The correct option is
A 2aca2+c2Let α and β are roots of the given equation sin2x+asinx+b=0. Then,
⇒ sinα+sinβ=−a1=−a .......... (A)
⇒ sinαsinβ=b1=b
Let α and β are roots of the given equation cos2x+ccosx+d=0. Then,
⇒ cosα+cosβ=−c1=−c .......... (B)
⇒ cosαcosβ=d1=d
a2+c2=(sinα+sinβ)2+(cosα+cosβ)2
=sin2α+sin2β+2sinαsinβ+cos2α+cos2β+2cosαcosβ
=1+1+2(sinαsinβ+cosαcosβ)
=2[1+cos(α−β)]
=2×2cos2(α−β2)
=4cos2(α−β2)
∴ a2+c2 =4cos2(α−β2) ---- ( 1 )
Now, from A and B
2sinα+β2.cosα−β2=−a --- ( 2 )
2cosα+β2.cosα−β2=−c ---- ( 3 )
Multiplying ( 2 ) and ( 3 ),
⇒ 4sinα+β2.cosα+β2.cos2(α−β2)=ac
⇒ 2sin(α+β)(a2+c24)=ac [ From ( 1 ) ]
⇒ sin(α+β)=2aca2+c2