lf α,β,γ are the roots of x3−7x+6=0, then the equation whose roots are (α−β)2,(β−γ)2,(γ−α)2 is:
A
(x−7)3−21(x−7)2+972=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(x+1)3−21(x+1)2+972=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(x+7)3−21(x+7)2+972=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(x+7)3−21(x+7)2−400=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(x−7)3−21(x−7)2+972=0 As α,β,γ are roots of x3−7x+6=0 We have s1=α+β+γ=0s2=αβ+αγ+βγ=−7s3=αβγ=−6 Now αβ+αγ+βγ=−7⇒αβγ+αγ2+βγ2=−7γ⇒γ2(α+β)=−7γ−αβγ ⇒−γ3=6−7γ⇒γ3=7γ−6 Let x=(α−β)2=(α+β)2−4αβ=γ2−4αβ ⇒xγ=γ3−4αβγ=7γ−6+24⇒γ=18x−7 Replacing x→18x−7 in given equation, we get (18x−7)3−7(18x−7)+6=0⇒183−7⋅18(x−7)+6(x−7)3=0⇒(x−7)3−21(x−7)+972=0