The correct option is
C −12Given:- α=cos8π11+isin8π11
To find: Re(α+α2+α3+α4+α5)
Solution:
Letα=cos8π11+isin8π11=ei8π11{eiθ=cosθ+isinθ}
Similarly, α2=ei16π11=cos16π11+isin16π11
α3=ei24π11=cos24π11+isin24π11
α4=ei32π11=cos32π11+isin32π11
α5=ei40π11=cos40π11+isin40π11
So, Re(α+α2+α3+α4+α5)
=cos(8π11)+cos(16π11)+cos(24π11)+cos(32π11)+cos(40π11)
Now let x=8π11 and
s = cosx+cos2x+cos3x+cos4x+cos5x
By multiplying and dividing by 2sinx2
S=12sinx2(2sinx2cosx+2sinx2cos2x+2sinx2cos3x+2sinx2cos4x+2sinx2cos5x)
After simplifying we get [sinc−sind=2(sinC−D2)(cosC+D2)]
S=12sinx2(sin11x2−sinx2)
S=12sinx2(sin112×8π11−sinx2)
S=12sinx2[0−sinx2]
S=−12
Hence, Re(α+α2+α3+α4+α5)=−12