The correct option is B Δ≤s23√3
△2=s(s−a)(s−b)(s−c)
⇒16△2=2s(2s−2a)(2s−2b)(2s−2c)
⇒16△22s=(b+c−a)(a+c−b)(a+b−c) ...(1)
Now taking (b+c−a)(a+c−b)(a+b−c) as three numbers and using A.M.≥G.M., we get
(b+c−a)+(a+c−b)+(a+b−c)3≥3√(b+c−a)(a+c−b)(a+b−c)⇒(a+b+c3)3≥(b+c−a)(a+c−b)(a+b−c)⇒8s327≥(b+c−a)(a+c−b)(a+b−c) ...(2)
From (1) and (2), we get
⇒8s327≥16△22s⇒s427≥△2⇒△≤s23√3