lf α+β+γ=π2 and cotα,cotβ,cotγ are in A.P., then the value of cotα.cotγ is
cotα,cotβ,cotγ are in A.P.
2cotβ=cotα+cotγ=tanα+tanγtanαtanγ
2cotβ=tan(α+γ)(1−tanαtanγ)tanαtanγ
2cotβ=cotβ(1−tanαtanγtanαtanγ)
Let tanαtanγ=k
2=1−kk
3k=1
tanαtanγ=k=13
cotαcotγ=3