lf cos4θsec2α,12 and sin4θcosec2α are in A.P., then cos8θsec6α,12 and sin8θcosec6α are in
A
A.P
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
G.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
H.P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B A.P We have: cos4θ.sec2α+sin4θ.cosec2α=1=>(1−sin2θ)21−sin2α+sin4θsin2α=1=>sin2α+sin4θsin2α−2sin2θsin2α+sin4θ−sin4θsin2α=sin2α−sin4α=>sin4θ−2sin2θsin2α+sin4α=0=>(sin2θ−sin2α)2=0=>sin2α=sin2θ Thus: cos8θsec6α+sin8θcosec6α=cos8θsec6θ+sin8θcosec6θ=cos2θ+sin2θ=1 Hence, option A is correct.