lf ∫(2x3+3x2−8x+1)√2x+6dx=√2x+6579(2x+6)f(x)+C then f(x) is equal to
A
x3−6x2−91x+297
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
7x3−3x2−132x+597
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
70x3−45x2−396x+897
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
70x3−45x2−132x+597
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D70x3−45x2−396x+897 Let I=∫(2x3+3x2−8x+1)√2x+6dx Substitute t=√2x+6⇒dt=1√2x+6dx I=∫t2(14(t2−6)3+34(t2−6)2−4(t2−6)+1)dt =∫(t84−15t64+14t4−2t2)dt =t936−15t728+14t55−2t33+c =2315(2x+6)32(70x3−45x2−396x+897)+c