The correct option is A −12,12
∫11+cot xdx
∫sin xsin x+cos xdx
Lets write, N(x)=λ(D1(x))+μ(D(x))
sin x=λ(cos x+sin x)+μ(sin x+cos x)
λ+μ=0−λ+μ=1λ=12 μ=−12
N(x)=12[D1(x)]+ 1/2[D(x)]
∫N(x)D(x)dx=−12∫D1(x)D(x)+ 12∫D(x)D(x)dx
=−12log(D(x))+12x+c
=−12log|sinx+cosx|+12x+c
A=−12;B=12