The correct option is D
125, 1825
We can write, 2 sin x + 3 cos x in a different form as,
2sinx+3cosx=λ(3sinx+4cosx)+μ(3cosx−4sinx)
Comparing the coefficient of sin x and cos x,
λ=1825andμ=125
Thus, the integral can be written as,
∫1825×3sinx+4cosx3sinx+4cosxdx+125×3cosx−4sinx3sinx+4cosxdx
= ∫1825dx+∫125×3cosx−4sinx3sinx+4cosxdx
Let 3sinx+4cosx=t
Then,
3cosx−4sinxdx=dt
Hence, ∫1825dx+∫125×dtt
=1825x+125logt+c
Putting the value of t,
1825x+125log(3sinx+4cosx)+c
Comparing it with the RHS,
A=125andB=1825