The correct option is
B A=25, B=−25√15,f(x)=4tanx2+1√15 Given, ∫dx(sinx+4)(sinx−1)=Atanx2−1+Btan−1f(x)+c
Breaking the LHS in partial fraction form we have ,
∫dx(sinx+4)(sinx−1)=15∫(dx(sinx−1)−dx(sinx+4))
Now by breaking sinx in submultiple angle we have LHS as ,
⇒ 15∫⎛⎜
⎜
⎜
⎜⎝dx(2sinx2cosx2−1)−dx(2sinx2cosx2+4)⎞⎟
⎟
⎟
⎟⎠ ......(1)
⇒ Putting tanx2=t we have,
⇒ 12sec2x2dx=dt............(2)
Putting (2) in (1) we get our LHS as,
⇒ 15∫⎛⎜
⎜
⎜
⎜⎝dt(2sinx2cosx2−1)−dt(2sinx2cosx2+4)⎞⎟
⎟
⎟
⎟⎠2sec2x2
⇒ 15∫((−2)dt(t−1)2−(−2)dt(2t+4(1+t2)))
⇒ 15∫⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝(−2)dt(t−1)2−(−2)dt(2t+12)2+(√15)222⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
⇒ 25tanx2−1+(−25√15)tan−14tanx2+1√15+c
Comparing the above with the very first equation we get
A=25, B=−25√15andf(x)=4tanx2+1√15