wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

lf dx(sinx+4)(sinx1)=Atanx21+Btan1f(x)+c then

A
A=15, B=2515, f(x)=4tanx+315
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
A=15, B=215, f(x)=4tanx2+115
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A=25, B=2515,f(x)=4tanx+115
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A=25, B=2515,f(x)=4tanx2+115
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is B A=25, B=2515,f(x)=4tanx2+115
Given, dx(sinx+4)(sinx1)=Atanx21+Btan1f(x)+c

Breaking the LHS in partial fraction form we have ,

dx(sinx+4)(sinx1)=15(dx(sinx1)dx(sinx+4))

Now by breaking sinx in submultiple angle we have LHS as ,

15⎜ ⎜ ⎜ ⎜dx(2sinx2cosx21)dx(2sinx2cosx2+4)⎟ ⎟ ⎟ ⎟ ......(1)

Putting tanx2=t we have,

12sec2x2dx=dt............(2)

Putting (2) in (1) we get our LHS as,

15⎜ ⎜ ⎜ ⎜dt(2sinx2cosx21)dt(2sinx2cosx2+4)⎟ ⎟ ⎟ ⎟2sec2x2

15((2)dt(t1)2(2)dt(2t+4(1+t2)))

15⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜(2)dt(t1)2(2)dt(2t+12)2+(15)222⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟

25tanx21+(2515)tan14tanx2+115+c

Comparing the above with the very first equation we get

A=25, B=2515andf(x)=4tanx2+115

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon