The correct option is B −3
We know that,
ex=sinhx+coshx
sinhx=ex−e−x2
coshx=ex+e−x2
Let f(x)=sinh3x−cosh3x
=(sinhx−coshx)(sinh2x+cosh2x+sinhxcoshx)
=(−e−x)((ex)2−2sinhxcoshx+sinhxcoshx)
=(−e−x)(e2x−sinhxcoshx)
=(−e−x)(e2x−e2x−e−2x4)
=(−e−x)(3e2x+e−2x4)
f(x)=(−3)ex−e(−3)x4=(−3)ex−e(−3)x1(−3)
k=−3