we get straight away tanΘ2=cos2ΘsinΘso (tanΘ2)(2sinΘ2cosΘ2)=cos2Θso 2sin2Θ2=cos2Θso 2−2cos2Θ2=(2cos2Θ2−1)2 we solve for cos2Θ
If cosecθ=54, then find the value of (1+tanθ)(1−tanθ)(1+cotθ)(1−cotθ)