lf tanθ2=√1−e1+etanα2 , then cosα equals
Simplifying the above equation, we get
√1−cosθ1+cosθ=√1−e1+e.√1−cosα1+cosα
Therefore
1−cosθ1+cosθ=1−e1+e1−cosα1+cosα
Therefore
1+e−cosθ−ecosθ1−e+cosθ−ecosθ=1−cosα1+cosα
1−e+cosθ−ecosθ−(1+e−cosθ−ecosθ)1−e+cosθ−ecosθ+1+e−cosθ−ecosθ=cosα [using componendo and dividendo]
2(cosθ−e)2(1−ecosθ)=cosα
Therefore
cosα=cosθ−e1−ecosθ