The correct option is C
−Tan2θ
We know by identity of hyperbolic functions,
sinhx=ex−e−12
Given, x=logcot(π4+θ)
∴sinhx=elogcot(π4+θ)−e−logcot(π4+θ)2
=cot(π/4+θ)−tan(π/4+θ)2
=cos2(π/4+θ)−sin2(π/4+θ)2sin(π/4+θ)cos(π/4+θ)
=cos(π/2+2θ)sin(π/2+2θ)[cos2x=cos2x−sin2x,sin2x=2sinxcosx]
=cot(π/2+2θ)
⇒sinhx=−tan2θ