lf f(x)=sin2x+sin2(x+π3)+cosxcos(x+π3) and g(54)=1, g(1)=0 then (gof)(x)=
A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Data is insufficient
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1 f(x)=sin2x+(sinxcosπ3+cosxsinπ3)2+cosx(cosxcosπ3−sinxsinπ3) =sin2x+[sinx2+√3cosx2]2+cos2x2−√32cosxsinx =sin2x+sin2x4+34cos2x+√32sinxcosx+cos2x2−√32sinxcosx =54(sin2x+cos2x)=54 ∴[gof](x)=g[f(x)]=g(54)=1