lf f(x)=ae2x+bex+cx, satisfies the conditions f(0)=−1, f′(log2)=31,and ∫log40(f(x)−cx)dx=392, then
A
a=5,b=6,c=3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a=5,b=−6,c=3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a=−5,b=6,c=3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a=1,b=2,c=3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Da=5,b=−6,c=3 f(x)=ae2x+bex+cx f(0)=−1 ⇒a+b=−1....(1) Now differentiating both sides of the given equation we get f′(x)=2ae2x+bex+cx Using f′(log2)=31, we get f′(log2)=2a(4)+2b+c=31 ⇒8a+2b+c=31....(2) ∫log40(f(x)−cx)dx=392, ⇒∫log40(ae2x+bex)dx=a2×e2x|log40+b×ex|log40=39/2 =a/2[16−1]+b[4−1]=39/2 =a/2[15]+3b=39/2 ⇒15a+6b=39....(3) Solving (1), and (3) simultaneously, we get a=5 and b=−6 Using the values of a and b in (2), we get c=3.