lf I1=∫tanx1/et1+t2dt and I2is∫cotx1/edtt(1+t2) then the value of I1+I2 is
A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
e2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12(e+1e)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D1 I1=12∫tanx1e2t1+t2dt=12[log(1+t2)]tanx1e=12[log(1+tan2x)−log(1+1e2)]=12[log(sec2x)−log(e2+1)log(e2)]=logsecx−log(e2+1)4I2=∫cotx1edtt(1+t2)=∫cotx1edtt−12∫cotx1e2t1+t2dt=[log]cotx1e−12[log(1+e2)]cotx1e=log(cotx)−log1e−12[logcosecx−log(1+1e2)]=log(cotx)+1−logcosecx+14log(e2+14)=−logsinx+logcosx+1+logsinx+14log(e2+14)[∵−logcosecx=log(cosecx)−1=logsinx][∵logcotx=log(cosecx)+1+14log(e2+14)]I1+I2=1+2=logcosx+1+log(secx)=logcosx+1−logsecx=1