The correct option is B 3a
By operation of matrix (5),
A=∣∣
∣∣a+xa−xa−xa−xa+xa−xa−xa−xa+x∣∣
∣∣
=(a+x)[(a+x)2−(a−x)2]−(a−x)[a2−x2−(a−x)2]+(a−x)[(a−x)2−(a2−x2)]
=(a+x)(4ax)−(a−x)(a2−x2)+2(a−x)3−(a−x)(a2−x2)
=(a+x)(4ax)+2(a−x)[a2+x2−2ax−a2+x2]
=(a+x)4ax+2(a−x)(2x2−2ax)
A=4a2x+4ax2+4ax2−4a2x−ax3+4ax2
A=8ax2+4ax2−4x3
A=12ax2−4x3
Given,A=12ax2−4x3=0
x2(12a−x)=0
x=3a