Sign of Trigonometric Ratios in Different Quadrants
lf A> 0, B ...
Question
lf A>0,B>0, and A+B=π3, then the maximum value of tanAtanB is
A
1√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
13
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A13 tanAtan(π3−A)=tanA(√3−tanA)1+√3tanA f(A)=√3tanA−tan2A1+√3tanA f′(A)=sec2A((√3−2tanA)(1−√3tanA)−√3(√3tanA−tan2A)(1+√3tanA)2 f′(A)=sec2A(√3+tanA−√3tan2A−3tanA)(1−√3tanA) So f′(A)=0 when tanA=1√3,√3
Check for f′′(A)<0 f(A) is maximum when tanA=1√3 f(A)=1√3×1√3=13