The correct option is C [−12,1]
given a2+b2+c2=1
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
=1+2(ab+bc+ca)
⇒(a+b+c)2−12=ab+bc+ca
minimum value of (a+b+c)2 is zero.
⇒min value of ab+bc+ca=−12...(1)
Now consider the expression
(a−b)2+(b−c)2+(c−a)2
The above expression is ≥0
⇒2(a2+b2+c2−ab−bc−ca)≥0
⇒ab+bc+ca≤a2+b2+c2
⇒ab+bc+ca≤1....(2)
From (1) and (2), the range of ab+bc+ca is
[−12,1]