The correct option is B c3√2ab
a2x4+b2y4=c6
⇒y4=c6−a2x4b2
Let s=xy
⇒s4=x4(c6−a2x4b2)
⇒4s3dsdx=4c6x3−8a2x7b2
For maxima or minima,
dsdx=0
⇒4x3(c6−2a2x4)=0
⇒x=0,x=c32214a12
d2sdx2<0 at x=c32214a12
Hence there is a maximum at x=c32214a12
Maximum value =xy=(c124a2b2)14=c3√2ab