The correct option is
C e:1As shown in the given figure, let the point
P on ellipse be
(a,b) on the ellipse
x2a2+y2b2=1S and S′ are the foci and A and A′ are the ends of major axis.
Given eccentricity e=√1−a2b2
Now we know the coordinates of A,A′,S and S′.
A:(a,0),A′:(−a,0),S:(+ae,0),S′:(−ae,0)
Now we know all the 3 vertices of the triangles APA' and SPS'
⇒area(ΔAPA′)=12∣∣
∣∣111xa−ay00∣∣
∣∣=ay .....(1)
and area(ΔSPS′)=12∣∣
∣∣111xae−aey00∣∣
∣∣=aey ....(2)
So, the required ratio area(ΔSPS′)area(ΔAPA′)=aeyay=e:1