lf x=2sint−sin2t,y=2cost−cos2t, then the value of d2ydx2 at t=π2 is
dydtdxdt=−2sint+2sin2t2cost−2cos2t
ddt(dydx)dtdx=d2ydx2=ddt(sin2t−sintcost−cos2t)1(2cost−2cost)
(d2ydx2)t=π2=((2cos2t−cost)(cost−cos2t)+(sin2t−sint)(sint−2sin2t)(cost−cos2t)2(2cost−2cos2t))
=(−2)(1)+(−1)(1)2
−32