The correct option is C x2
limn→∞[x]+[2x]+...+[nx]n2=limn→∞1n2∑nk=1[kx]
As kx−1<[kx] ⇒∑nk=1(kx−1)<∑nk=1[kx]<∑nk=1(kx+1)⇒xn(n+1)2−n<∑nk=1[kx]<xn(n+1)2+n⇒x2(1+1n)−1n<1n2∑nk=1[kx]<x2(1+1n)+1n⇒limn→∞(x2(1+1n)−1n)<limn→∞1n2∑nk=1[kx]<limn→∞(x2(1+1n)+1n)⇒x2<limn→∞1n2∑nk=1[kx]<x2
⇒limn→∞1n2∑nk=1[kx]=x2
Hence, option 'A' is correct.