Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2cos−145
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π2+cos−135
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sin−135−cos−135
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2cos−135 Let z=x+iy Hence the above expression reduces to x2+(y−25)2=152 Hence x=15cosθ y=25+15sinθ. Hence arg(z)=tan−1(25+15sinθ15cosθ) =tan−1(5+3sinθ3cosθ). Now Let k=5+3sinθ3cosθ Hence dkdθ=3cosθ(3cosθ)+3sinθ(5+3sinθ)9cos2θ=0 Hence 9cos2θ+9sin2θ+15sinθ=0 Or sinθ=−915=−35. Hence cosθ=±45. Hence arg(z)max=tan−1(5+3−353.45) =tan−1(25−912) =tan−1(43) Similarly arg(z)min=tan−1(−43)=−tan−1(43). Hence arg(z)max−arg(z)min=2tan−1(43) =2cos−1(35)