The given question can
be written as.
1+(1+2)x+(1+2+3)x2+(1+2+3+4)x3...∞
=1+3x+6x2+12x3...∞
(1−x)−n=1−n(−x)+−n(−n−1)x22!...∞
=1+nx+n(n+1)x22!...∞
Assuming x=1
Comparing the coefficients with that given in the
question, we get.
nx=3 ...(i)
n(n+1)x22!=6 ...(ii)
Substituting the value of nx in equation (i),
we get
3(nx+x)=12
3+x=4
x=1
Since nx=3
n=3
If we do not substitute the value of x and
only substitute the value of n in the original equation, we get
1+3x+6x2+12x3...∞=(1−x)−n
=(1−x)−3