The correct option is B ln4
The given series can be written as limn→∞n∑r=11r+√rn=limn→∞1n∑1r/n+√r/n
.
Converting the infinite limit into definite integral, we get
∫101x+√xdx=∫10dx√x(√x+1)
.
Now substitute √x+1=t⇒12√xdx=dt
.
We get the integral as ∫212dtt=2[lnt]21=2ln2=ln4