The correct option is A 4x+3y−29=0
Given parabola may be written as,
(x−5)2+(y−3)2=∣∣
∣∣3x−4y+1√32+42∣∣
∣∣2
Thus the focus of the parabola is (5,3) and directrix is, 3x−4y+1=0
Therefore the equation of axis of the parabola will perpendicular to the directrix and is given by,
4x+3y+k=0,
Also axis passes through focus, ⇒4.5+3.3+k=0⇒k=−29
Hence required line is 4x+3y−29=0