lf the equation 6x2+5xy+by2+9x+20y+c=0 represents a pair of perpendicular lines, then b−c=
6x2+5xy+by2+9x+20y+c=0 ----(1)
⇒ax2+2hxy+by2+2gx+2fy+c=0 ----(2)
By comparing 1 & 2
a=6,b=b
As given pair of perpendicular lines
i.e. a+b=0
a=−b
b=−a=−6
b=−6
Let,
6x2+5xy−6y2=0
t=xy,
6t2+5t−6=0
t=−32,23
2x+3y=0 and
3x−2t=0
Let (2x+3y+c1)=0 and 3x−2y+c2=0
Then (2x+3y+c1)(3x−2y+c2)=0
(6x2+5xy−6y2)+(2c2+3c1)x+(3c2−2c1)y+c1c2=0 ----(3)
∴ By comparing 1 & 3,
2c2+3c1=9 ----(4)
3c2−2c1=20 ---(5)
From 4 & 5,
c2=7813=6 & c1=−1
∴c=c1c2=−6
∴b−c=−6+6=0