lf the polars of the points on the circle x2+y2=a2 with respect to the circle x2+y2=c2 touches the circle x2+y2=b2 then
Let P(a cosθ,a sinθ) be point on
circle x2+y2=a2.
The equation of polars from P(a cosθ,a sinθ) with respect to
circle x2+y2=c2 is
xa cosθ+ya sinθ=c2
x cosθ+y sinθ=c2a −−−−−−−(1)
Then xcosθ+y sinθ−c2a=0 is a tangent to
circle x2+y2=b2
∴ b=∣∣
∣
∣
∣∣c2a√cos2 a+sin2 a∣∣
∣
∣
∣∣
b=c2a
∴c2=ab
⇒c=√ab