lf the pole of a line w.r. t. the circle x2+y2=a2 lies on the circle x2+y2=a4 , then the line touches the circle
Let any point on
circle x2+y2=a4 be P(a2 cosθ1,a2sinθ)
Then equation of chord of contact from P on
circle x2+y2=a2 is
x a2cos θ+y a2 sin θ =a2
x cos θ+y sin θ =1 −−−−−(1)
x cos θ+y sin θ =1 is
an equation of polar of x2+y2=0
So, x cosθ+y sinθ=1 is tangent to a
circle x2+y2=1