lf the two lines represented by x2(tan2θ+cos2θ)−2xytanθ+y2sin2θ=0 make angles α,β with the x-axis, then
A
tanα+tanβ=4cosec 2θ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
tanαtanβ=sec2θ+tan2θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tanα−tanβ=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
tanαtanβ=2+sin2θ2−sin2θ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Atanα+tanβ=4cosec 2θ Ctanαtanβ=2+sin2θ2−sin2θ Dtanα−tanβ=2 tanϕ=yx=t sin2θt2−2ttanθ+tan2θ+cos2θ=0 tanα+tanβ=2tanθsin2θ=2sinθcosθ=4cosec 2θ ...(i) tanα×tanβ=tan2θ+cos2θsin2θ tanα−tanβ=√(tanα+tanβ)2−4tanα×tanβ =√(2sinθcosθ)2−4sin2θ+cos4θsin2θcos2θ =2√(1−sin2θ−cos4θ)sin2θcos2θ =2√1−cos2θsin2θ tanα−tanβ=2 ...(ii) Dividing (i) by (ii), we get tanα+tanβtanα−tanβ=42sin2θ Using Componendo and Dividendo, We get tanαtanβ=2+sin2θ2−sin2θ Hence, A, C, D.