lf θ is the angle between two lines whose d.c.s are l1,m1,n1 and l2,m2,n2, then the d.cs of one of the angular bisectors of the two lines are
l1+l22cos(θ2),m1+m22cos(θ2),n1+n22cos(θ2)
Let the direction cosines of the line be l1,m1,n1.
Hence, l1=cosα, m1=cosβ, n1=cosγ
Similarly, for another line
l2=cosα′, m2=cosβ′, n2=cosγ′
Now the direction cosines of the angle bisector will be,
cos(α−α′2+α′),cos(β−β′2+β′),cos(γ−γ′2+γ′)
=cos(α+α′2),cos(β+β′2),cos(γ+γ′2)
=l,m,n
Now consider cos(α+α′2)
Multiplying and dividing by 2cos(α−α′2), we get
2cos(α−α′2)cos(α+α′2)2cos(α−α′2)
=cosα+cosα′2cos(α−α′2)
=l1+l22cos(α−α′2)
=l
Hence, l=l1+l22cos(θ2)
Similarly,
m=m1+m22cos(β−β′2)
n=n1+n22cos(γ−γ′2)
Hence, option B is correct.