lf θ is the angle between two lines whose d.cs are l1,m1,n1 and l2,m2,n2, then
Σ(l1+l2)24cos2(θ2)+Σ(lI−l2)24sin2(θ2)=
Let →a1 and →a2 be unit vectors along the lines.
→a1=l1^i+m1^j+n1^k
→a2=l2^i+m2^j+n2^k
⇒l21+m21+n21=1 and l22+m22+n22=1
Consider the dot product of →a1 and →a2
→a1.→a2=(l1l2)+(m1m2)+(n1n2)
⇒cosθ=(l1l2)+(m1m2)+(n1n2)
S=Σ(l1+l2)24cos2(θ2)+Σ(lI−l2)24sin2(θ2)
⇒S=2+2(l1l2+m1m2+n1n2)4cos2θ2+2−2(l1l2+m1m2+n1n2)4sin2θ2
⇒S=2+2cosθ4cos2θ2+2−2cosθ4sin2θ2
Now, 1+cosθ=2cos2θ2 and 1−cosθ=2sin2θ2
⇒S=22+22
⇒S=2