lf x=(7+4√3)2n=[x]+f, then x(1−f) is equal to
x=(7+4√3)2n
x=3+f
f is fractional part of x
⇒0<f<1
Let f′=(7−4√3)2n
0<7−4√3<1
0<(7−4√3)n<1
⇒0<f′<1
I+f+f′=2[2nC0(7)2n+2nC2(7)2n−2+....]
= even
0+f+f′<2 is integer.
′I′ is integer and f+f′ is also integer.
⇒f+f′=1
f′=1−f
x(1−f)=xf′=(7+4√3)2n(7−4√3)2n
=1