wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

lf xn+1=1+xn2 , then cos⎢ ⎢1x20x1x2x3.⎥ ⎥(1<x0<1) is equal to

A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1x0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C x0
Let L=cos⎢ ⎢1x20x1x2x3.⎥ ⎥=limncos⎢ ⎢1x20x1x2x3xn⎥ ⎥
Put x0=cosθx1=1+cosθ2=cosθ2
x2= 1+cosθ22=cosθ22
Similarly xn=cosθ2n
L=limncos⎢ ⎢ ⎢ ⎢1cos2θcosθ2cosθ22...........cosθ2n⎥ ⎥ ⎥ ⎥
=limncos⎢ ⎢ ⎢ ⎢sinθcosθ2ncosθ2n1...........cosθ2⎥ ⎥ ⎥ ⎥
=limncos⎢ ⎢ ⎢ ⎢2sinθ2nsinθ2sinθ2ncosθ2ncosθ2n1...........cosθ2⎥ ⎥ ⎥ ⎥
=limncos⎢ ⎢ ⎢ ⎢2sinθ2nsinθsinθ2n1cosθ2n1...........cosθ2⎥ ⎥ ⎥ ⎥,[2sinxcosx=sin2x]
.........................................
.........................................
doing it n times
=limncos⎢ ⎢ ⎢2nsinθ2nsinθsinθ⎥ ⎥ ⎥=limncos[2nsinθ2n]
=limncos⎢ ⎢ ⎢θsinθ2nθ2n⎥ ⎥ ⎥=cosθ=x0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 6
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon