1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
lim 2 h → 03 ...
Question
lim
2
h
→
0
3
sin
π
/
6
+
h
-
cos
π
/
6
+
h
3
h
3
cos
h
-
sin
h
is equal to
(a)
2/3
(
b
)
4/3
(
c
)
-
2
3
(d)
−4/3
Open in App
Solution
(d) 4/3
lim
h
→
0
2
3
sin
π
/
6
+
h
-
cos
π
/
6
+
h
3
h
3
cos
h
-
sin
h
=
lim
h
→
0
2
3
2
cos
h
+
3
2
sin
h
-
3
2
cos
h
+
sin
h
2
h
3
cos
h
-
3
sin
h
=
lim
h
→
0
2
2
sin
h
h
×
1
3
cos
h
-
3
sin
h
=
lim
h
→
0
4
3
cos
h
-
3
sin
h
=
4
3
Suggest Corrections
0
Similar questions
Q.
lim
h
→
0
2
(
√
3
sin
(
π
6
+
h
)
−
cos
(
π
6
+
h
)
)
√
3
h
(
√
3
cos
h
−
sin
h
)
is equal to
Q.
The value of
lim
h
→
0
2
⎧
⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪
⎩
√
3
sin
(
π
6
+
h
)
−
cos
(
π
6
+
h
)
√
3
h
(
√
3
cos
h
−
sin
h
)
⎫
⎪ ⎪ ⎪ ⎪
⎬
⎪ ⎪ ⎪ ⎪
⎭
is :
Q.
The value of
lim
h
→
0
2
⎧
⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪
⎩
√
3
sin
(
π
6
+
h
)
−
cos
(
π
6
+
h
)
√
3
h
(
√
3
cos
h
−
sin
h
)
⎫
⎪ ⎪ ⎪ ⎪
⎬
⎪ ⎪ ⎪ ⎪
⎭
is :
Q.
lim
h
→
0
2
⎡
⎣
√
3
sin
(
π
6
+
h
)
−
cos
(
π
6
+
h
)
√
3
h
(
√
3
cosh
−
sinh
)
⎤
⎦
=
Q.
If
0
≤
x
≤
π
2
and
81
s
i
n
2
x
+
81
c
o
s
2
x
=
30
then x is equal to