limn→∞1.n2+2.(n−1)2+3.(n−2)2+.....n.1213+23+....n3
Given expression is
1.n2+2.(n−1)2+3.(n−2)2+.....n.1213+23+....n3
Here, we can generalize numerator and denominator as
∑r=nr=1[r.(n−r+1)2]∑nr=1r3
=∑r=nr=1r.(n−r+1)2∑nr=1r3
= ∑nr=1[r.(n+1)2+r2−2r(n+1)]∑nr=1r3
= ∑nr=1[r.(n+1)2r+r3−2r2(n+1)]∑nr=1r3
= (n+1)2∑nr=1r+∑nr=1r3−2(n+1)∑nr=1(r2)∑nr=1r3
= (n+1)2.n(n+1)2+n2(n+1)24−2(n+1).n(n+1)(2n+1)6n2(n+1)24
Dividing numerator and denominator by n(n+1)22
=(n+1)4+n8−(2n+1)6n8
limn→∞14+18−13−16n+14n18
=12418
= 1/3