The correct option is A sin2θ
We know that,
sin4θ=sin2θsin2θ⇒sin4θ=sin2θ(1−cos2θ)⇒sin4θ=sin2θ−14(4sin2θcos2θ)⇒sin4θ=(sin2θ−14sin22θ)
Now,
Sn=(sin2θ−14sin22θ) +(14sin22θ−142sin24θ) . . . +(14nsin2(2nθ)−14n+1sin2(2n+1θ))⇒Sn=sin2θ−14n+1sin2(2n+1θ)
Therefore,
limn→∞S=limn→∞(sin2θ−14n+1sin2(2n+1θ))=sin2θ