limn→∞n∑r=1cot−1(r2+34) is
0
tan-11
tan-12
limn→∞n∑r=1tan−1(44r2+3)
= limn→∞n∑r=1tan−1(1r2−14+1)
= limn→∞n∑r=1tan−1((r+12)−(r−12)1+(r+12)(r−12))
= limn→∞n∑r=1tan−1{tan−1(r+12)−tan−1(r−12)}
= limn→∞{tan−1(n+12)−tan−1(12)} = π2−tan−112 = tan−12