1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Property 1
limn →∞1n+1+1...
Question
lim
n
→
∞
(
1
n
+
1
+
1
n
+
2
+
.
.
.
.
.
+
1
2
n
)
=
Open in App
Solution
Now,
lim
n
→
∞
(
1
n
+
1
+
1
n
+
2
+
.
.
.
.
.
+
1
2
n
)
=
lim
n
→
∞
1
n
⎛
⎜ ⎜ ⎜
⎝
1
1
+
1
n
+
1
1
+
2
n
+
.
.
.
.
.
+
1
1
+
n
n
⎞
⎟ ⎟ ⎟
⎠
=
lim
n
→
∞
n
∑
r
=
1
1
n
⎛
⎜ ⎜
⎝
1
1
+
r
n
⎞
⎟ ⎟
⎠
=
1
∫
0
1
1
+
x
d
x
[ Using definition of definite integral]
=
|
log
|
(
1
+
x
)
|
|
x
=
1
x
=
0
=
log
2
.
Suggest Corrections
0
Similar questions
Q.
Solve:
lim
n
→
∞
{
1
n
+
1
+
1
n
+
2
+
…
+
1
2
n
}
=
Q.
lim
n
→
∞
[
1
n
+
1
n
+
1
+
1
n
+
2
+
⋯
+
1
2
n
]
=
[Karnataka CET 1999]