1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Definite Integral as Limit of Sum
lim n →∞ n / ...
Question
lim
n
→
∞
(
n
n
2
+
1
2
+
n
n
2
+
2
2
+
n
n
2
+
3
2
+
.
.
.
+
1
5
n
)
is equal to :
A
tan
−
1
(
2
)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
tan
−
1
(
3
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π
/
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π
/
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
tan
−
1
(
2
)
lim
n
→
∞
(
n
n
2
+
1
2
+
n
n
2
+
2
2
+
n
n
2
+
3
2
+
.
.
.
+
1
5
n
)
=
lim
n
→
∞
(
n
n
2
+
1
2
+
n
n
2
+
2
2
+
n
n
2
+
3
2
+
.
.
.
+
n
n
2
+
(
2
n
)
2
)
=
lim
n
→
∞
2
n
∑
r
=
1
n
n
2
+
r
2
=
lim
n
→
∞
2
n
∑
r
=
1
1
n
⎛
⎜ ⎜ ⎜
⎝
1
1
+
(
r
n
)
2
⎞
⎟ ⎟ ⎟
⎠
=
2
∫
0
d
x
1
+
x
2
=
tan
−
1
(
2
)
Suggest Corrections
23
Similar questions
Q.
lim
n
→
∞
(
n
n
2
+
1
2
+
n
n
2
+
2
2
+
n
n
2
+
3
2
+
.
.
.
+
1
5
n
)
is equal to :
Q.
lim
n
→
∞
(
n
n
2
+
1
2
+
n
n
2
+
2
2
+
n
n
2
+
3
2
.
.
.
.
.
.
1
5
n
)
Q.
The value of
lim
n
→
∞
[
n
1
+
n
2
+
n
4
+
n
2
+
n
9
+
n
2
+
⋯
+
1
2
n
]
is equal to
[Bihar CEE 1994]