wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limx0(1+x)12(1x)12x

Open in App
Solution

limx0(1+x)12(1x)12x

At x=0,the value of the expression is 00 form.

applying L'Hospital Rule in the expression

Differentiate the Numerator and Denominator, and then applying the limit

limx0ddx(1+x)12ddx(1x)12ddxx

= limx012(1+x)(121)×ddx(1+x)12(1x)(121)×ddx(1x)1

= limx012(1+x)12112(1x)12(1)

= limx0(121+x+12(1x))

Putting x=0

=121+121

=12+12=1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Indeterminant Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon