limx→0(1+x)12−(1−x)12x
limx→0(1+x)12−(1−x)12x
At x=0,the value of the expression is 00 form.
applying L'Hospital Rule in the expression
Differentiate the Numerator and Denominator, and then applying the limit
limx→0ddx(1+x)12−ddx(1−x)12ddxx
= limx→012(1+x)(12−1)×ddx(1+x)12(1−x)(12−1)×ddx(1−x)1
= limx→012(1+x)−12∗1−12(1−x)−12∗(−1)
= limx→0(12√1+x+12√(1−x))
Putting x=0
=12√1+12√1
=12+12=1