limx→02x−1(1+x)12−1
We have, limx→02x−1(1+x)12−1
At x=0, the value of the expression is the form of 00.
Applying L'Hospital Rule
limx→0ddx(2x−1)ddx[(1+x)12−1]
limx→02xlog2e−012(1+x)12−1.ddx(1+x)−0
limx→02xlog2e12√(1+x)xL
limx→02(√(1+x)2x.log2e
Putting x=0
=2(√1+0)20log2e
=2×1×1.log2e
=2log2e=log4e