limx→ 0eαx−eβxx=
limx→ 0eαx−eβxx
At x=0, the value of the given function is 00 form
limx→ 0eαx−eβx+1−1x
limx→ 0(eαx−1)−(eβx−1)x
limx→ 0eαx−1x×αα−limx→ 0eβx−1x×βα
αlimx→ 0eαx−1α x− βlimx→ 0eβx−1β x {limx→ 0ex−1x=1}
α×1−β×1
α−β
Option D is correct