limx→ 0sinx+log(1−x)x2
We have, limx→ 0sinx+log(1−x)x2
At x=0 the value of the function is 00 form.
We know, the expression of sinx&log(1−x)
limx→ 0(x−x33!+x55!.......)+(−x−x22−x33−x44.......)x2
x and -x will cancel out each other
limx→ 0(−x33!+x55!.......)+(−x22−x33+x44.......)x2
limx→ 0(−x3!+x35!.......)+(−12−x3+x24.......)
=0−12−0
=−12
Option C is correct