limx→0tan 2x−x3x−sinx
limx→0tan 2x−x3x−sinx
At x=0,the value of the given function takes the form 00
applying L'Hospital Rule
Differentiate Numerator and Denominator
limx→0ddxtan 2x−ddxxddx(3x)−ddxsinx
= limx→0sec22xddx(2x)−13−cos x
= limx→02sec22x−13−cos x
Putting x=0
2×1−13−1=12