limx→0x.2x−x1−cosx
We have, limx→0x.2x−x1−cosx
At x=0,the value of the expression is the form 00
applying L'Hospital Rule
Differentiate numerator and denominator and then apply limit.
limx→0ddx(x.2x)−ddxxddx(1−cosx)
= limx→0x.ddx2x+2xddxx−10−(−sinx) {ddx(uv)=u.dvdx+v.dydx}
=limx→0x.2x.log2e+2x−1sin x
Again At x=0,the value of the expression is the form 00
Differentiate numerator and denominator again and then apply limit.