limx→2sin(ex−2−1)log(x−1)
We have, limx→2sin(ex−2−1)log(x−1)
At x=2, the value of the given expression
sin(e2−2−1)log(2−1)=sin0log1=00form
Applying L'Hospital Rule
limx→2ddx(sin(ex−2−1))ddxlog(x−1)
limx→2cos(e(x−2)−1).ddx{e(x−2)−1}1x−1ddx(x−1)
limx→2cos(e(x−2)−1)∗ex−21(x−1)∗1
limx→2(x−1)cos(e(x−2)−1)∗ex−2
Putting x=2
(2-1) cos(e2−2−1)×e(2−2)
=1×cos 0×e0
=1×1×1=1