limx→π2sin x−(sin x)sin x1−sin x+1n sin x is equal to
4
2
-1
0
Let sin x be = t
then = limt→1t−tt1−t+In t (by L'Hospital's rule) = limt→11−tt(1+In t)0−1+1t = limt→10−{tt(1t)+tt(1+In t)20−1t2 = 2
limx→0(sin xx)(sin xx−sin x) equals